Lecture 7

Contact angle phenomena and wetting

Young's equation

• Drop on the surface

- complete spreading
 - Establishing finite contact angle

$$\gamma_L \cos \theta = \gamma_S - \gamma_{SL}$$

$$\gamma_S - \gamma_{SL} > 0$$
 partial wetting

$$\gamma_S - \gamma_{SL} < 0$$
 no wetting

Young's equation

Derivation from the equilibrium condition

$$dG = (\gamma_{SL} - \gamma_S) dA_{SL} + \gamma_L dA_L = 0 \quad \text{at} \quad dV = 0$$

$$dA_{SL} = 2\pi a da$$

$$dA_{L} = \frac{\partial A_{L}}{\partial a} da + \frac{\partial A_{L}}{\partial h} dh = 2\pi a da + 2\pi h dh$$

$$dV_{L} = \frac{\partial V_{L}}{\partial a} da + \frac{\partial V_{L}}{\partial h} dh = \pi a h da + \frac{\pi}{2} (a^{2} + h^{2}) dh = 0$$

$$dA_L = 2\pi a \cos\theta da$$

Line tension

 For small drops (<10µm) an additional energy of the wetting line should be taken into account

$$\gamma_L \cos \theta = \gamma_S - \gamma_{SL} - \frac{\kappa}{a}$$

- Estimate:
 - at a rim a molecule has 2 bonds less (assuming simple cubic)
 - for cyclohexane:

$$\kappa = \frac{\Delta_{vap} U}{3N_A a_{mol}} = 3 \cdot 10^{-11} \, \text{J/m}$$

Complete wetting

• If $\gamma_S > \gamma_{SL} + \gamma_L$

Gibbs free energy is decreased by forming a continuous film on the surface

- Spreading coefficient: $S = \gamma_S \gamma_{SL} \gamma_L$
- Contact angle decreases with temperature due to drop in γ_L.
- At wetting temperature Tw, S=0 and complete wetting is reached.

Capillary rise

 If capillary is dipped in a liquid, the liquid meniscus will either rise or lower due to surface tension

$$h = \frac{2\gamma_L \cos \theta}{r_c g \rho}$$

Indeed:

$$dG = -2\pi r_C dh \cdot (\gamma_S - \gamma_{SL}) + 2\pi r_C^2 \rho gh dh$$

Particles at liquid-gas interface

 For small particles (i.e. neglecting the gravity) the equilibrium position at the interface is determined by the surface tension

Works both ways: flotation and stabilization of emulsion by solid particles

Network of fibers

 Network of fibers with final wetting angle will prevent water from passing through; some pressure has to be applied to let it through

Measurement of the contact angle

 The most common technique is observation of sessile drop with a microscope

$$\tan\left(\frac{\theta}{2}\right) = \frac{h}{a}$$

Sessile drop

Sessile bubble.

- or by using a Wilhelmy plate
- Wetting properties of powders can be detrmined from capillary rise

Note, the contact angle depends strongly on the surface contamination

Hysteresis in contact angle measurements

- If we increase or decrease e.g. droplet volume a hysteresis in the angle will be observed
- Usually:

$$\theta_{adv} > \theta_{rec}$$

- Causes for the contact angle hysteresis:
 - surface roughness
 - heterogeneity of the surface (resulting in pinning of a droplet)
 - absorbing dissolved substances
 - mechanical deformation of the surface due to surface tension
 - adsorption/desorption of liquid molecules at the interface (work required!)

Surface roughness and heterogeneity

 Roughness increases the actual surface area and therefore decreases the apparent wetting angle for hydrophilic surface and increases it for a hydrophobic surface (Wenzel law)

$$\cos\theta_{app} = R_{rough} \cdot \cos\theta$$

Heterogeneous surfaces:
 Cassie equation

$$\cos\theta_{app} = f_1 \cdot \cos\theta_1 + f_2 \cdot \cos\theta_2$$

Theory aspects

- Surface tension at solid-air and solid-liquid interfaces strongly depend on the surface preparation (e.g. deformation)
- Experimentally only advancing and receding angles can be determined
- Macroscopic (Young's) contact angle is different from a microscopic one (caused by van der Waals and DL-forces, at distances <100nm)

Theory aspects

- Surface tension at solid-liquid is the most difficult to be accessed by the experiment
- Though it can be estimated based on the properties of clean interfaces (Girifalco, Good and Fowkes model)

$$\gamma_{12} = \gamma_1 + \gamma_2 - 2\sqrt{\gamma_1\gamma_2}$$

Dynamics of wetting

- Typical measurement geometries
- Typical measurement geometries

- Apparent contact angle depends also on the speed and viscosity, that can be combined into a
- Capillary number:

$$Ca = \frac{v\eta}{\gamma_L}$$

Dynamic of wetting and dewetting

Apparent contact angle vs. speed

Apparent advancing angle vs. capillary number for two

mixtures of glycerol/water

Despite 7 times difference in viscosity, capillary number is a good parameter for both liquids

Dynamics of wetting

Liquid spreading on a solid surface

movement of the drop. Heat is dissipated by eddies

binding of molecules at the front of the precursor film

Dynamics of wetting: examples

Spreading of PDMS drops on Si surface

Ellipsometer profile, 19h after deposition:

AFM image of PDMS drops on Si surface

Fabrication of polymer nanotubes using precursor film

Brief dipping of the alumina filter in a polystyrol melt

SEM image of the nanotubes (scale 1µm)

Dynamics wetting: mechanism

- The wetting kinetics is determined by absorption of the precursor film molecules e.g. finding the binding sites and displacing the gas molecules
- Maximum wetting speed and minimum dewetting speed can be predicted based on the modelling (e.g. for water v_{max}=5-10 m/s

Polymer deposition and Dewetting

Many films are metastable or stable above

certain thickness

polymers are typically deposited either by dip or spin coating

- if wetting angle θ =0, the film is thermodynamically stable
- if wetting angle θ >0, the film is metastable and the holes will be formed spontaneously above the glass transition temperature

dewetting of a 28nm polystyrene film on Si at 121 °C

Flotation

 Flotation is a method to separate solid particles from each other based on their wetting properties

Technology

- crushing into small particles (<0.1mm) and mixing with water (pulp)
- bubbling air through
- the higher the wetting angle the better particles attach to a bubble
- specifically adsorbed surfactants ("collectors") can be used to improve efficiency

Detergency

 Detergency: theory and praxis of removing foreign material from solids by surface-active substrates

Mechanism:

- Dirt-Solid interface is replaced by Dirt-Water and Water-Solid interfaces after addition of detergent
- Dirt particles are suspended in water preventing aggregation and flocculation (e.g. electrostatically)

$$\Delta G = A(\gamma_{DW} + \gamma_{SW} - \gamma_{SD}) \le 0$$
$$\gamma_{SD} \le \gamma_{DW} + \gamma_{SW}$$

Adjustable wetting

Electrowetting

$$\cos\theta = \cos\theta_0 + \frac{\varepsilon\varepsilon_0 U^2}{2h\gamma_L}$$

 Photoswitching of hydrophobic/hydrophilic state (e.g. azobenzene)

 Electrical field controlled conformation of SAM layer

Problems

End of chapter problems:

- ch.7.1
- ch.7.2
- ch.7.3